Nuclear localization of SMN and FUS is not altered in fibroblasts from patients with sporadic ALS.

نویسندگان

  • Shingo Kariya
  • Jacinda B Sampson
  • Lesley E Northrop
  • Christopher M Luccarelli
  • Ali B Naini
  • Diane B Re
  • Michio Hirano
  • Hiroshi Mitsumoto
چکیده

Abstract Sporadic amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no established biological marker. Recent observation of a reduced number of gems (survival motor neuron protein (SMN)-positive nuclear bodies) in cells from patients with familial ALS and the mouse models suggests an involvement of SMN in ALS pathology. At a molecular level, fused in sarcoma (FUS), one of the familial ALS-linked proteins, has been demonstrated to directly interact with SMN, while impaired nuclear localization of mutated FUS causes defective gem formation. Our objective was to determine whether gems and/or nuclear FUS levels in skin derived fibroblasts from sporadic ALS patients are consistently reduced and thus could constitute a novel and readily available biomarker of the disease. Fibroblasts from 20 patients and 17 age-matched healthy controls were cultured and co-immunostained for SMN and FUS. Results showed that no difference was detected between the two groups in the number of gems and in expression pattern of FUS. The number of gems negatively correlated with the age at biopsy in both ALS and control subjects. In conclusion, the expression pattern of SMN and FUS in fibroblasts cannot serve as a biomarker for sporadic ALS. Donor age-dependent gem reduction is a novel observation that links SMN with cellular senescence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

U1 snRNP is mislocalized in ALS patient fibroblasts bearing NLS mutations in FUS and is required for motor neuron outgrowth in zebrafish

Mutations in FUS cause amyotrophic lateral sclerosis (ALS), but the molecular pathways leading to neurodegeneration remain obscure. We previously found that U1 snRNP is the most abundant FUS interactor. Here, we report that components of the U1 snRNP core particle (Sm proteins and U1 snRNA), but not the mature U1 snRNP-specific proteins (U1-70K, U1A and U1C), co-mislocalize with FUS to the cyto...

متن کامل

ALS-causative mutations in FUS/TLS confer gain- and loss-of-function by altered association with SMN and U1-snRNP

The RNA-binding protein FUS/TLS, mutation in which is causative of the fatal motor neuron disease amyotrophic lateral sclerosis (ALS), is demonstrated to directly bind to the U1-snRNP and SMN complexes. ALS-causative mutations in FUS/TLS are shown to abnormally enhance their interaction with SMN and dysregulate its function, including loss of Gems and altered levels of small nuclear RNAs. The s...

متن کامل

FUS-SMN protein interactions link the motor neuron diseases ALS and SMA.

Mutations in the RNA binding protein FUS cause amyotrophic lateral sclerosis (ALS), a fatal adult motor neuron disease. Decreased expression of SMN causes the fatal childhood motor neuron disorder spinal muscular atrophy (SMA). The SMN complex localizes in both the cytoplasm and nuclear Gems, and loss of Gems is a cellular hallmark of fibroblasts in patients with SMA. Here, we report that FUS a...

متن کامل

FUS is sequestered in nuclear aggregates in ALS patient fibroblasts

Mutations in the RNA-binding protein FUS have been shown to cause the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We investigate whether mutant FUS protein in ALS patient-derived fibroblasts affects normal FUS functions in the nucleus. We investigated fibroblasts from two ALS patients possessing different FUS mutations and a normal control. Fibroblasts from these patients hav...

متن کامل

De novo truncating FUS gene mutation as a cause of sporadic amyotrophic lateral sclerosis.

Mutations in the gene encoding fused in sarcoma (FUS) were recently identified as a novel cause of amyotrophic lateral sclerosis (ALS), emphasizing the genetic heterogeneity of ALS. We sequenced the genes encoding superoxide dismutase (SOD1), TAR DNA-binding protein 43 (TARDBP) and FUS in 99 sporadic and 17 familial ALS patients ascertained at Mayo Clinic. We identified two novel mutations in F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Amyotrophic lateral sclerosis & frontotemporal degeneration

دوره 15 7-8  شماره 

صفحات  -

تاریخ انتشار 2014